MBA数学提高2:数列之无敌解法
来源:广东网 更新时间:2008/2/24 10:33:57 阅读[7030]
详细研读本篇数列解法和例题,可快速解决任何MBA数列问题。 基本数列是等差数列和等比数列.
一、等差数列一个等差数列由两个因素确定:首项a1和公差d. 得知以下任何一项,就可以确定一个等差数列(即求出数列的通项公式): 1、首项a1和公差d 2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n) 3、任意两项a(n)和a(m),n,m为已知数 等差数列的性质: 1、前N项和为N的二次函数(d不为0时) 2、a(m)-a(n)=(m-n)*d 3、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)也是等差数列 例题1:已知a(5)=8,a(9)=16,求a(25) 解: a(9)-a(5)=4*d=16-8=8 a(25)-a(5)=20*d=5*4*d=40 a(25)=48 例题2:已知a(6)=13,a(9)=19,求a(12) 解:a(6)、a(9)、a(12)成等差数列 a(12)-a(9)=a(9)-a(6) a(12)=2*a(9)-a(6)=25
二、等比数列一个等比数列由两个因素确定:首项a1和公差d. 得知以下任何一项,就可以确定一个等比数列(即求出数列的通项公式): 1、首项a1和公比r 2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n) 3、任意两项a(n)和a(m),n,m为已知数 等比数列的性质: 1、a(m)/a(n)=r^(m-n) 2、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)是等比数列 3、等比数列的连续m项和也是等比数列即b(n)=a(n)+a(n+1)+...+a(n+m-1)构成的数列是等比数列。
三、数列的前N项和与逐项差 1、如果数列的通项公式是关于N的多项式,最高次数为P,则数列的前N项和是关于N的多项式,最高次数为P+1。(这与积分很相似) 2、逐项差就是数列相邻两项的差组成的数列。如果数列的通项公式是关于N的多项式,最高次数为P,则数列的逐项差的通项公式是关于N的多项式,最高次数为P-1。(这与微分很相似)例子: 1,16,81,256,625,1296 (a(n)=n^4) 15,65,175,369,671 50,110,194,302 60,84,108 24,24 从上例看出,四次数列经过四次逐项差后变成常数数列。 等比数列的逐项差还是等比数列 四、已知数列通项公式A(N),求数列的前N项和S(N)。这个问题等价于求S(N)的通项公式,而S(N)=S(N-1)+A(N),这就成为递推数列的问题。解法是寻找一个数列B(N),使S(N)+B(N)=S(N-1)+B(N-1)从而S(N)=A(1)+B(1)-B(N)猜想B(N)的方法:把A(N)当作函数求积分,对得出的函数形式设待定系数,利用B(N)-B(N-1)=-A(N)求出待定系数。
例题1:求S(N)=2+2*2^2+3*2^3+...+N*2^N 解:S(N)=S(N-1)+N*2^N N*2^N积分得(N*LN2-1)*2^N/(LN2)^2 因此设B(N)=(PN+Q)*2^N 则 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N (P*N+P+Q)/2*2^N=-N*2^N 因为上式是恒等式,所以P=-2,Q=2 B(N)=(-2N+2)*2^N A(1)=2,B(1)=0 因此:S(N)=A(1)+B(1)-B(N) =(2N-2)*2^N+2 例题2:A(N)=N*(N+1)*(N+2),求S(N)解法1:S(N)为N的四次多项式,设:S(N)=A*N^4+B*N^3+C*N^2+D*N+E 利用S(N)-S(N-1)=N*(N+1)*(N+2)解出A、B、C、D、E 解法2: S(N)/3!=C(3,3)+C(4,3)+...C(N+2,3) =C(N+3,4) S(N)=N*(N+1)*(N+2)*(N+3)/4